This report is designed to inform you about the quality of the water and the services that the City of Bordentown Water Department delivers to you every day. Our constant goal is to provide you with a dependable supply of high-quality drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Where does my water come from?
The raw water we treat comes from four groundwater wells supplied from the Magohy-Rarian aquifer. The City does not use any other sources of supply. For 2016 we produced approximately 2.13 million gallons of high-quality drinking water for our customers on a daily basis.

How is my water treated?
The City of Bordentown water treatment plant uses a treatment process consisting of WRT radiological filtration, a packed tower aerator and disinfection, with pH adjustment and corrosion control treatment. In Nove-mber 2015 a radium removal treatment process was added to assist in the removal of radioactive contaminants.

How is my drinking water quality?
In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. The City of Bordentown Water Department routinely monitors for contaminants in your drinking water, according to Federal and State laws. The table on the other side of this report shows the results of our monitoring for the period of January 1st to December 31st 2016. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily mean that your water poses a health risk.

Waived Requirements
The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals, and synthetic organic chemicals. Our system has been granted a monitoring waiver for asbestos.

How do drinking water sources become polluted?
(NJDEP-required descriptive language)
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases radioactive materials, and can pick up substances resulting from human or animal activity. Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, which may be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil or gas production, mining, or farming.
- **Pesticides and herbicides**, which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- **Radioactive contaminants**, which may be naturally-occurring or be the result of oil and gas production and mining activities.
- **Organic chemical contaminants**, including synthetic or volatile organic chemicals, which may include pesticides and herbicides. They may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses or by-products of industrial processes, petroleum production, gas stations, or septic systems.

What if I have questions?
If you have any questions about this Consumer Confidence Report or concerning your water utility, please contact the City of Bordentown at (609) 298-2121, ext. 5. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled public meetings. They are held at 7:00 p.m. on the second Monday of each month at the Carslake Community Center, 207 Crosswicks Street in Bordentown. If you have questions regarding the source water assessment report or summary, please contact the NJDEP’s Bureau of Safe Drinking Water at (609) 292-5550.

People with Special Health Concerns
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV / AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA / CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).
City of Bordentown Water Department’s 2016 Drinking Water Quality Results

Contaminant (Unit of measurement)	MCLG	MCL	Your sample Max. (ppm)	Range of Sample Max. (ppm)	Violation (1/yr)	Likely Source of Contamination	Potential Health Effects

Disinfectants & Disinfectant Byproducts (There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)

- Total Trihalomethanes (ppb) | n/a | 80 | 4.60 | 0.70 – 10.60 | No | By-product of drinking water disinfection. | Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidney, or central nervous system, and may have an increased risk of getting cancer.
- Haloacetic Acids (ppb) | n/a | 60 | 0.24 | 0.00 – 1.72 | No | By-product of drinking water disinfection. | Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Radioactive Contaminants

- Alpha emitters (pCi/L) | 3 | 15 | 2.89 | ND – 13640 | No | Emission of natural isotopes. | Certain isotopes are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over a relatively short amount of time may have an increased risk of getting cancer.
- Combined Radium (pCi/L) | 5 | 5 | 1.72 | ND – 4.00 | No | Emission of natural radium. | Some people who drink water containing radium 226 or 228 in excess of the MCL over many years may have an increased risk of getting cancer.
- Combined Uranium Isotopes (pCi/L) | 0 | 20 | 0.56 | ND – 1.68 | No | Emission of natural isotopes. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.

Inorganic Contaminants

- Arsenic (ppb) | 0 | 10 | 0.73 | ND – 10 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Barium (ppm) | 2 | 20 | 0.02 | ND – 0.81 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Cadmium (ppb) | 5 | 5 | 0.17 | ND – 0.36 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Copper (ppm) | 1.3 | 2 | 1.24 | ND – 3.60 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Lead (ppb) | 15 | 5 | 0.74 | ND – 1.48 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Mercury (ppm) | 2 | 2 | 0.05 | ND – 0.36 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Nitrite or Nitrate (as Nitrogen) (mg/L) | 10 | 10 | 0.65 | ND – 2.0 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Nickel (ppb) | ND | 5 | 0.15 | ND – 0.36 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.
- Uranium (ppb) | 50 | 50 | 2.0 | ND – 6.48 | No | Emission of natural radium. | Some people who drink water containing uranium in excess of the MCL over many years could experience kidney problems and high blood pressure.

Chemical Residue

- Chlorine (ppm) | MRDL = 4.0 | MRDL = 4.0 | 0.56 (ave.) | 0.0 – 1.41 | No | Water additive used to control microbiology. | Some people who drink water containing chlorine in excess of the MRDL could experience irritating effects in their eyes and nose. Some people who drink water containing chlorine in excess of the MCL could experience skin irritation and eye irritancy. Some people who drink water containing chlorine in excess of the MCL could experience skin irritation and eye irritancy.

Microbiological Contaminants

<table>
<thead>
<tr>
<th>Sample Violation</th>
<th>% of samples</th>
<th>% of samples</th>
<th>Water system</th>
<th>Rating reflects the</th>
<th>Nutrient rating reflects the</th>
<th>Nutrient rating reflects the</th>
<th>Nutrient rating reflects the</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As a result of the assessments, the DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

- Nutrients (4 Wells-M): Compounds, minerals, and elements (both naturally occurring and man-made) that aid plant growth. Examples include nitrogen and phosphorus.
- Pesticides (4 Wells-L): Man-made chemicals used to control pests, weeds and fumes. Common sources include land application and manufacturing of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlorodane.
- Radionuclides (2 Wells-H, 2 Wells-M): Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

Source Water Assessments

The New Jersey Department of Environmental Protection (NJDEP) in 2005 completed and issued the Source Water Assessment Report and Summary for our public water system. It is available at http://www.state.nj.us/dep/wateruser/swap/index.html or by contacting the NJDEP, Bureau of Safe Drinking Water at (609) 278-5559. The list to the right provides the numbers of wells that have either a high (H), medium (M), or low (L) susceptibility rating for each of eight contaminant categories. The susceptibility ratings (parentheses) for the four wells follow each contaminant category.

If a water system is rated highly susceptible for a contaminant, the system does not meet the health protection goals. If a water system is rated medium susceptible for a contaminant, the system is not expected to exceed the health protection goals. If a water system is rated low susceptible for a contaminant, the system is also fecal coliform or E. coli positive.)

GLOSSARY

- Parts per million (ppm)
- Picocuries per liter (pCi/L)
- Maximum Disinfection Residual Level Equivalent (MRDLE)
- Maximum Contaminant Level Goal (MCLG)
- Maximum Contaminant Level Goal (MCL)
- Volatile Organic Compounds (VOCs)
- Inorganics (1 Well-H, 3 Wells-M): Mineral-based compounds that are both naturally occurring and man-made.

Laboratory analysis indicates that the contaminant is not present at a detectable level.

Notice were prepared and issued in compliance with NJDEP Rules and Regulations. In November 2015 an additional treatment process was added to assist in the removal of radioactive contaminants including combined radium and alpha emitters.

Some people who drink water containing uranium in excess of the MCL over many years could develop kidney problems and high blood pressure.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Disinfection Residual Level Equivalent (MRDLE)

The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Contaminant Level Goal (MCL)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Picocuries per liter (pCi/L)

A measure of radioactivity.

Volatile Organic Compounds (4 Wells-H): Man-made chemicals used as solvents, diluents, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

Inorganics (1 Well-H, 3 Wells-M): Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radon (4 Wells-M): Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.state.nj.us/dep/pp/radon/index.htm or call (800) 648-0594.

Disinfection Byproduct Precursors (3 Wells-H, 1 Well-M): A common source is naturally occurring inorganic matter. Disinfection byproducts are formed when the disinfectants used to kill pathogens (usually chlorine) react with dissolved organic material (leaves, etc.) in surface water.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Others:

Children may receive a slightly higher amount of a contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water compared to their body weight than adults. For this reason, regulatory limits for the presence of disinfection byproducts are calculated on the basis of a drinking water standard at which these effects occur, lower than the health effects of concern. If there is insufficient toxicity information for a disinfection byproduct, the health effects are specified on the basis of a drinking water standard at which these effects occur, lower than the health effects of concern. For this reason, regulatory limits for the presence of disinfection byproducts are calculated on the basis of a drinking water standard at which these effects occur, lower than the health effects of concern. If there is insufficient toxicity information for a disinfection byproduct, the health effects are specified on the basis of a drinking water standard at which these effects occur