Microbial contaminants, pesticides and herbicides, radioactive contaminants, organic chemical contaminants, inorganic contaminants, as well as asbestos, volatile organic chemicals, contaminants in bottled water, which must provide the Food and Drug Administration regulations establish limits water poses a health risk.

The presence of contaminants does not necessarily mean your water has been drinking water. What do my water come from? The raw water we treat comes from four groundwater wells supplied from the Magothy-Raritan aquifer. The City does not provide you with a dependable supply of high-quality drinking water. We are committed to ensuring the quality of your water.

Where do we come from? The City of Bordentown water treatment plant uses a treatment process that includes radioactive removal, treatment process was added to assist in the removal of radioactive contaminants.

How is my water treated? In order to comply with the Safe Drinking Water Act regulations to allow monitoring for asbestos, volatile organic chemicals, and synthetic organic chemicals. Our system has been granted a waiver for asbestos.

How do drinking water sources become polluted? (NJDEP-enforced descriptive language) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and to some cases radio-active materials, and can pick up substances resulting from human or animal activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals which may be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil or gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants, which may be naturally-occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic or volatile organic chemicals, which may include pesticides and herbicides. They

Violations ALE for LEAD: The Lead Action Level was exceeded during the Semi-annual monitoring period 7-61-2017 to 12-31-2017 for the following sample point ID: Distribution System. The 90th percentile value for seventy four (74) samples collected between 11-3-2017 and 11-29-2017 was 30 ppb which exceeded the action level of 15 ppb. Until further test results show we are at or below the action level (AL) of 15 ppb, we will continue semiannual sampling. A second round of sampling was performed in October 2017. As part of our corrective action plan and consistent with NJDEP guidelines, homes were re-tested and all results from the re-testing came back with no action level exceedances; meaning, the City’s re-testing of the original lead exceedances came back with no exceedances. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and connections between the water utility and the home. We at the City of Bordentown Water Department are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you may minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

People with Special Health Concerns Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be more vulnerable to contaminants in drinking water. We want our valued customers to be informed about the quality of the water we provide. We’re pleased to present to you this year’s Annual Drinking Water Quality Report.
City of Bordentown Water Department’s 2017 Drinking Water Quality Results

Source Water Assessments

The New Jersey Department of Environmental Protection (NJDEP) in 2005 completed and updated the Source Water Assessment Report and Summary for our public water system. It is available at http://www.nj.gov/dep/watersup/liswap/index.html or by contacting the NJDEP Bureau of Safe Drinking Water at (609) 292-5550. The list to the right provides the number of wells that have either a high (Hi), medium (M), or low (L) susceptibility rating for each of the contaminant categories. The ratings (in parentheses) for the four wells follow each contaminant category.

If a water system is rated highly susceptible for a contaminant category, it does not mean a consumer is or will be consuming contaminated drinking water. This rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, the DWP may change existing monitoring schedules based upon susceptibility ratings.

Disinfectants & Disinfection Byproducts

(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.)

<table>
<thead>
<tr>
<th>Contaminant Category</th>
<th>nnP</th>
<th>ppb ppm</th>
<th>Action Level (AL)</th>
<th>Maximum Residual Disinfection Level Goal (MRDLG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury (ppm)</td>
<td>0</td>
<td>1.3 50</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Cadmium (ppm)</td>
<td>0</td>
<td>0.1 50</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Arsenic (ppm)</td>
<td>5</td>
<td>0.1 80</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Beryllium (ppb)</td>
<td>3</td>
<td>0.5 80</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>0</td>
<td>1.0 80</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Combined Uranium (ppb)</td>
<td>0</td>
<td>0.69 80</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Selenium (ppm)</td>
<td>0</td>
<td>0.1 80</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Chromium (ppm)</td>
<td>0</td>
<td>1.0 80</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Lead (ppm)</td>
<td>0</td>
<td>1.0 80</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>0</td>
<td>0.8 80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Notes:
- The AL is a “running annual average” of the quarterly samples taken.
- The MRDLG is the highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- The Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- The Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

GLOSSARY

- **Action Level (AL)**: The concentration of a substance which, if exceeded, triggers the need for additional required treatment. Monitoring only of substances that exceed an AL is required.
- **Maximum Residual Disinfection Level Goal (MRDLG)**: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **Picocuries per liter (pCi/L)**: A measure of radioactivity.

Pathogens (4 Wells-M): Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.

- **Nutrients (4 Wells-H)**: Compounds, minerals and elements (both naturally occurring and man-made) that aid plant growth. Examples include nitrogen and phosphorus.

- **Pesticides (4 Wells-L): Man-made chemicals used to control pests, weeds and fungi. Common sources include land application and manuring of pesticides. Examples include herbicides such as atrazine, and insecticides such as chloro-dane.

- **Radionuclides (2 Wells-H, 2 Wells-M): Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

- **Volatile Organic Compounds (4 Wells-H): Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

- **Inorganics (1 Well-H, 3 Wells-M):** Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

- **Radon (4 Wells-M):** Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.epa.gov/region9/po-radon/index.htm or call 800-646-0394.

- **Disinfection Byproduct Precursors (3 Wells-H, 1 Well-M):** A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when these disinfectants used to kill pathogens (usually chlorine) react with dissolved organic material (leaves, etc.) in surface water.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Others

Children may receive a slightly higher amount of a contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults. For this reason, reproductive or developmental effects are used for calculating the drinking water standard if these effects occur at lower levels than other health effects of concern. Concern may be sufficient to justify information for public health (for example, lack of data on teratogenic or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the cases of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based.